Operating System Concepts

Lesson 9, 10

Objectives

e Threads
e Multithreading model
e Inter-process communication
e Implementation of threads in different programming languages
THREADS
e Athread is a light weight process (LWP)
e It can be defined as a basic unit of CPU utilization
e |t also has to maintain certain information, but it is far less than a process
information requirements. The information required about:
o Program Counter (PC)
o Register Set (Limited)
o Stack Space

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack
thread ——» g g g ;4—— thread
single-threaded process multithreaded process

e This information required is a fraction of process information requirement
e A heavy weight process (HWP) or task may contains more than one threads
e Single thread is always in a single task

e Threads of same task are synchronized and connected

e A thread shares with peer thread

Operating System Concepts

o Its code section (Instructions)
o Data section (variables)
o OS resources

= Files (open)

= Signals (clocks)

e Threads are preferred since context switching in threads is faster than that of
processes

e Two types of threads

o User-level threads: where kernel is not involved, so run independently, no
interrupts needed, hence execution is fast

o Kernel-level thread: which involves kernel so interrupt occurrence is
rapid. A single user call may make entire task wait until it returns (Win
Xp, 2000, Solaris, Linux, Mac OS X)

e Benefits: Threads ensure cooperating, responsiveness, economy (In Solaris
process creation is 30times slower than threads creation, and context switching is
5time)

e Three primary threads libraries are i) POSIX PThreads ii) win32 threads iii) Java
threads

e Example of a word processor with three threads; for input, disk storage and

display.

Kernel
Keyboard Disk

Example: CPU Vs User-threads

Operating System Concepts

Let us have two processes namely P1 (single threaded) and P2 (100 threaded).
1- If these are user threads, and each process is given same CPU time, then thread 1
will get 100 times more CPU than process 2.
2- If these are kernel threads, then P2 will buzz the kernel 100 times more than P1
and hence will get 100 times CPU than P1.
Some OS supports both types of threads, so called Hybrid threads systems.

MULTITHREADING MODELS (Hybrid Systems)
» Many-to-One
» One-to-One
» Many-to-Many
Many-to-one
e Many user-level threads mapped to single kernel thread
e Examples:
o Solaris Green Threads
o GNU Portable Threads
e Only one thread is executing code in the kernel at a time so make wait remaining
threads

e Provides synchronization of data access and locking of data is avoided.

SEF.

k) «<—kernel thread

Operating System Concepts

One-to-one
e Each user-level thread maps to kernel thread
e Examples
o Windows NT/XP/2000
o Linux

o Solaris 9 and later

<«—— user thread

=
D QO @

Many-to-many

e Allows many user level threads to be mapped to many kernel threads
e Allows the operating system to create a sufficient number of kernel threads

e Solaris prior to version 9

s S

34— user thread

<«——Kernel thread

INTER-PROCESS COMMUNICATION
There are two ways for inter-process communication

1- Through some common shared buffer (producer-consumer problem in computing,

the producer—consumer problem®? (also known as the bounded-buffer problem) is a classic example of a
multi-process synchronizationproblem. The problem describes two processes, the producer and the consumer,

who share a common, fixed-size buffer used as a gueue. The producer's job is to generate a piece of data, put

it into the buffer and start again. At the same time, the consumer is consuming the data (i.e., removing it from

https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Producer%E2%80%93consumer_problem#cite_note-ostep1-1
https://en.wikipedia.org/wiki/Producer%E2%80%93consumer_problem#cite_note-ostep2-2
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Synchronization_(computer_science)
https://en.wikipedia.org/wiki/Buffer_(computer_science)
https://en.wikipedia.org/wiki/Queue_(data_structure)

Operating System Concepts

the buffer) one piece at a time. The problem is to make sure that the producer won't try to add data into the

buffer if its full and that the consumer won't try to remove data from an empty buffer.) eXplicitly
managed by application program
2- Sending messages is an OS service used for synchronization and communication
Both schemes can work simultaneously
Basic Structure
e Two operations send / receive
e Message might be of fixed / variable length
e Existence of communication link (shared memory, H/W bus, network)
Methods
e Direct/ Indirect communication
e Symmetric/Asymmetric communication
e Automatic / Explicit buffering
e Send by copy or by reference
e Fixed /variable length messages
Direct
e Names of both ends should be known (Symmetric)
¢ Only single and one-to-one link between exactly two processes
e Send (P, message), sends message to P
e Receive (Q, message), receives message from Q
e Disadvantages: Requirement of names/ updates if names are changed, not suitable
for separate compilation
Indirect
e Communication via a mailbox (ports)
e Link is subject to shared mailbox only
e Link may be among more than one process
e More than one link between two processes
e OS helps in creating, maintaining, destroying mailboxes
Buffering
There are three kinds of buffering:

Operating System Concepts

1- Zero capacity: In this way the queue can’t hold a message it sSimply make it thru.
Sender has to wait until receiver receives the message. It works like a gateway.
Synchronization (rendezvous means agreement, handshake) is basic requirements.

2- Bounded capacity: The queue has finite length n; thus at the most n messages
can be absorbed. Sender will continue until buffer is filled then wait for vacancy,
similarly, receiver will receive until it goes empty, then it have to wait for the next
element.

3- Unbounded capacity: This is of considerably large space. Thus any number of

messages can reside in it and sender never needs to wait for vacancy.

THREADS IMPLEMENTATION IN DIFFERENT LANGUAGES
1- A C++ threading example using PThreads

Operating System Concepts

L finclude <stdioc. h>
L finclude <stdlilb_ k>
L finclude <pthread_h>

- wvoid *print message function{ woid ‘ptr I;

. mainil
. 1
- pthread t threadl, threadz;

- char *messagel = "Thread 1";

- -

- char *messagel = "Thread Z";

L int iretl, iret;

. iretl = pthread creafe (| &threadl, HULL, print_message_function, (woid®)
messagel) ;

- iretd = pthread create(&s&threadl, HULL, print message function, {woid®*)
messagel)

. othread_join{ threadl, HULLD;

- pthread join{ thread2, HULL):

L printf ("Thread 1 returns: Sdwn", iretl);
L printf ("Thread Z returns: Sdwn",iret2);
L exit (0}

" [

- wvold "print message function{ wold *ptr
. {

- char *message;

- message = {char *) ptr;

- printf("%s “\n", message);

" [

2- Java Threads (Optional)
e Java threads are managed by the JVM
e Java threads may be created by:
o Extending Thread class
o Implementing the Runnable interface
e Java has built in thread support for Multithreading
e Synchronization
e Thread Scheduling

Operating System Concepts

CXits

1/0
is
available

blocked

e Inter-Thread Communication:

o currentThread start setPriority
o Yyield run getPriority
o sleep stop suspend

o resume

e Java Garbage Collector is a low-priority thread.
2.1 First Method

e Threads are implemented as objects that contains a method called run()
class MyThread extends Thread
{

public void run{()

{
// thread body of execution

}
e Create a thread:

MyThread thrl = new MyThread() ;

e Start Execution of threads:

thrl.start();

e Create and Execute:

new MyThread() .start();

2.2 Second Method

class MyThread extends ABC implements Runnable

Operating System Concepts

public void run()

{
// thread body of execution

e Creating Object:

MyThread myObject = new MyThread() ;
e Creating Thread Object:

Thread thrl = new Thread(myObject);

e Start Execution:

thrl.start ()%
Inter process communication Example in Java

e Remote Procedure Call (RPC)

e Remote Method Invocation (RMI)
Background
Socket and Client-Server Architecture
A socket is defined as an endpoint for communication. A pair of processes
communicating over a network employs a pair of sockets-one for each process. A socket
is identified by an IP address concatenated with a port number. In general, sockets use
client-server architecture. The server waits for incoming client requests by listening to a
specified port. Once a request is received, the server accepts a connection from the client
socket to complete the connection.
Servers implementing specific services (such as telnet, ftp, and http) listen to well-known
ports (a telnet server listens to port 23, an ftp server listens to port 21, and a web, or http,
server listens to port 80). All ports below 1024 are considered well known; we can use
them to implement standard services. When a client process initiates a request for a
cOlulection, it is assigned a port by the host computer. This port is some arbitrary
number greater than 1024. For example, if a client on host X with IP address 146.86.5.20
wishes to establish a connection with a web server (which is listening on port 80) at
address 161.25.19.8, host X may be assigned port 1625. The connection will consist of a
pair of sockets: (146.86.5.20:1625) on host X and (161.25.19.8:80) on the web server.

Operating System Concepts

host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

{(161.25.19.8)

socket
(161.25.19.8:80)

e

Communication using sockets.

The packets traveling between the hosts are delivered to the appropriate process based on
the destination port number. All connections must be unique. Therefore, if another
process also on host X wished to establish another cOllilection with the same web server,
it would be assigned a port number greater than 1024 and not equal to 1625. This ensures
that all connections consist of a unique pair of sockets. Although most program examples
in this text use C, we will illustrate sockets using Java, as it provides a much easier
interface to sockets and has a rich library for networking utilities. Those interested in
socket programming in C or C++ should consult the bibliographical notes at the end of
the chapter. Java provides three different types of sockets. Connection-oriented (TCP)
sockets are implemented with the Socket class. Connectionless (UDP) sockets use the
DatagramSocket class. Finally, the MulticastSocket class is a subclass of the
DatagramSocket class. A multicast socket allows data to be sent to multiple recipients.
Our example describes a date server that uses connection-oriented TCP sockets. The

operation allows clients to request the current date and time from the server.

import Jjava.net.*;
import Jjava.io.*;
public class DateServer{
public static void main (String[] args) {
try {
ServerSocket sock = new ServerSocket (6013);
// now listen for connections
while (true) {
Socket client = sock.accept();

10

Operating System Concepts

PrintWriter pout;
pout = new PrintWriter (client.getOutputStream(),
true);
// write the Date to the socket
pout.println(new java.util.Date() .toString());
// close the socket and resume
// listening for connections
client.close () ;
}
}
catch (IOException ioe) {
System.err.println(ioce) ;

Date server

import java.net.*;
import java.io.*;
public class DateClient{
public static void main (String[] args) {
try {
//make connection to server socket
Socket sock = new Socket ("127.0.0.1",6013);
InputStream in = sock.getInputStream();
BufferedReader bin;
bin = new BufferedReader (new InputStreamReader (in)) ;
// read the date from the socket
String line;
while ((line = bin.readLine()) != null)
System.out.println(line) ;
// close the socket connection
sock.close () ;
}
catch (IOException ioce) {
System.err.println(ioce) ;

Date client

11

